Note

Assignment of ¹³C NMR data of methyl (+)-hardwickiate and its derivatives

Marta Costa,¹ Fred Y. Fujiwara² and Paulo M. Imamura²*

Received 5 October 1997; revised 23 February 1998; accepted 26 February 1998

ABSTRACT: Despite the large number of clerodanes isolated as natural products in the last decade, the correct ¹³C NMR chemical shift assignments of some carbons are still in doubt. In order to provide unambiguous assignments of the chemical shifts of clerodane diterpenes, a complete ¹³C NMR spectral analysis of methyl (+)-hard-wickiate and 14 hemisynthetic derivatives is reported. © 1998 John Wiley & Sons, Ltd.

KEYWORDS: NMR; ¹³C NMR; methyl (+)-hardwickiate; clerodane derivatives

INTRODUCTION

In the course of our research on the isolation and chemical transformations of some readily available resinic acids from commercial copaiba oil, one of the major components, (+)-hardwickiic acid, was isolated as the methyl ester (1) after treatment with diazomethane. Although the ¹³C NMR data for the (-)-enantiomer have been reported, we decided to perform an unambiguous assignment.

The assignment of the ¹³C NMR resonance signals of 1 was based on general chemical shift arguments, ^{4,5} analogy with decalin models⁶ and comparison with related clerodanes. ^{2,3,7-10} Surprisingly, in spite of the NMR data available for a large number of new natural clerodane diterpenes which have been isolated, we frequently found equivocated chemical shift assignments, mainly for carbons C-1, C-2, C-6, C-7, C-11 and C-12. We therefore decided to undertake a detailed study of the assignment of ¹³C NMR data for 1–15 (Fig. 1), utilizing 1D (¹H, ¹³C, ¹³C DEPT) experiments and 2D (one-bond and long-range HETCOR and ¹H-¹H COSY) experiments on representative compounds of each series.

EXPERIMENTAL

¹H, ¹³C and DEPT spectra were obtained for all compounds on a Bruker AC 300 spectrometer operating at 300 MHz for ¹H in 5 mm tubes at ambient temperature using CDCl₃ as the solvent and tetramethylsilane as an internal reference. ¹H spectra were obtained with the following conditions: 30° pulse, 2.26 s acquisition time, 1 s relaxation delay and 32K data points. A 45° pulse,

0.82 s acquisition time, 2 s relaxation delay and 64K data points were used to obtain the 13 C spectra. For the DEPT sequence, the $(2J)^{-1}$ delay was set at 3.45 ms and a relaxation delay of 2 s was used.

The homonuclear ${}^{1}H^{-1}H$ COSY spectra of 1, 5 and 10 were obtain on a Bruker AC 300 spectrometer using the COSY-45 pulse sequence with 1024 data points in t_2 , 256 increments in t_1 and a 2 s relaxation delay. The data were processed by sinusoidal multiplication in each dimension followed by symmetrization.

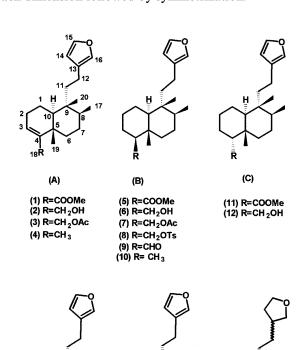


Figure 1. Structures of the compounds investigated.

(14)

(13)

(15)

¹ Departamento de Química, UFMS, MS

² Instituto de Química, UNICAMP, C.P. 6154, CEP 13083-970, Campinas, S.P., Brazil

^{*} Correspondence to: P. M. Imamura, Instituto de Química, UNICAMP, C.P. 6154, CEP 13083-970, Campinas, S.P., Brazil. Contract/grant sponsor: FAPESP.

Table 1. 13 C chemical shifts of methyl (+)-hardwickiate (1) and its derivatives (2–15) (δ in ppm from TMS, CDCl₃ solutions)

Carbon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	17.5	18.2	18.2	18.2	21.0	21.5	21.4	21.3	21.1	21.5	21.0	21.5	21.8	23.6	21.5
2 3	27.2	26.6	26.7	26.7	26.2	26.9	26.7	26.5	26.0	27.4	22.6	22.4	28.7	128.3	26.5
3	137.1	122.3	126.2	120.6	24.9	25.4	25.7	25.3	21.9	30.8	24.3	23.6	33.1	128.8	25.0
4	142.7	148.2	142.9	143.7	57.6	54.4	50.5	50.6	64.0	46.1	53.9	51.3	160.6	157.1	57.6
5	37.7	37.5	37.9	37.9	37.3	37.0	36.9	36.9	38.1	37.2	36.7	36.9	40.1	37.7	37.4
6	36.0	36.4	36.2	36.6	39.9	39.5	39.3	39.2	39.9	39.3	38.3	37.0	37.4	37.2	39.9
7	27.3	27.3	27.2	27.4	27.1	27.3	27.3	27.1	26.9	27.4	27.2	27.3	27.4	27.3	27.2
8	36.3	36.3	36.3	36.2	36.6	36.5	36.5	36.3	36.6	36.6	36.5	37.0	36.7	36.7	36.6
9	38.9	38.8	38.8	38.4	38.9	38.9	38.8	38.8	39.0	38.5	38.6	38.8	38.8	38.9	38.8
10	46.6	46.4	46.3	46.1	49.3	49.7	49.6	49.6	49.4	49.8	39.9	42.2	48.7	43.5	49.3
11	38.7	38.6	38.6	38.5	38.3	38.5	38.5	38.4	38.5	38.8	38.3	38.2	38.4	38.2	37.1
12	18.2	18.2	18.2	18.2	18.1	18.1	18.1	18.0	18.1	18.1	18.2	18.2	18.1	18.0	26.2
13	125.8	125.9	125.9	125.2	125.6	125.9	125.9	125.8	125.8	125.9	125.9	125.7	125.7	125.6	40.1
14	111.2	111.2	111.2	110.7	111.0	111.2	111.2	111.2	111.2	111.1	111.1	111.0	111.0	111.0	32.8
15	142.9	142.9	142.9	142.3	142.7	142.9	142.9	142.9	143.0	142.6	142.5	142.7	142.6	142.6	68.1
16	138.6	138.6	138.6	138.0	138.4	138.6	138.6	138.6	138.7	138.4	138.5	138.4	138.4	138.3	73.8
17	16.0	16.0	16.0	16.1	16.0	16.1	16.1	16.0	16.0	16.2	16.0	16.0	16.6	15.9	16.0
18	168.0	63.1	65.1	17.9	175.0	63.6	65.8	72.1	206.7	13.2	175.8	62.1	102.5	107.0	175.3
19	20.7	21.4	21.3	19.8	14.8	15.2	15.0	15.0	16.3	15.2	21.6	23.0	20.9	22.0	14.8
20	18.3	18.3	18.1	18.2	18.1	18.1	18.2	18.1	18.1	18.2	18.1	18.2	18.1	18.1	18.2
CH ₃ /CO	50.5		171.3		50.9		171.7	144.8^{i}			50.8				51.0
Ac			21.2				21.1	130.0^{o}							
m-Ar								128.1^{m}							
p-Ar								133.5^{p}							
Ar-Me								21.7							

One-bond and long-range $^{13}\text{C}^{-1}\text{H}$ correlation experiments (HETCOR) of 1 and 5 were obtained on a Varian Unity spectrometer operating at 125.7 MHz. The spectra were acquired with proton decoupling and 128 increments in t_1 with coupling constants of 140 and 10 Hz for the one-bond and long-range correlations, respectively. The t_1 dimension was extrapolated to 512 using linear prediction and zero-filled to 2048 data points. Sinusoidal multiplication was used to process the 2048×4096 data points. One-bond and long-range $^{13}\text{C}^{-1}\text{H}$ HETCOR spectra of 11 were obtained on a Varian Gemini 2000 spectrometer operating at 75.4 MHz with 256 increments in t_1 and a relaxation delay of 1 s, and the 512×2048 data points were processed using exponential multiplication with LB = 3 Hz.

RESULTS AND DISCUSSION

All compounds were characterized by $[\alpha]_D^{25}$, MS, IR and ¹H NMR measurements and elemental analysis. Methly (+)-hardwickiate (1) was isolated from commercial copaiba oil ¹ and the other compounds were prepared from 1 by reduction, hydrogenation, acetylation, oxidation, etc. The experimental procedures used will be published elsewhere.

The comparison of the ¹³C NMR data for all the compounds reveals a certain constancy of the chemical shifts for the carbons of the B ring (C-6-C-9) and for side-chain carbons, except for 15, which has a tetra-

hydrofuranyl group instead of a furan. As can be seen in Fig. 1, there are two major series with and without the Δ^3 -decalin system for the AB ring (1–4). As mentioned before, the main discrepancies which we observed in the literature concern the possible exchange of the assignments for carbons C-2/C-7 and C-6/C-11. To confirm the assignments of these carbons, COSY (¹H-¹H), DEPT and one-bond and long-range HETCOR experiments were performed for 1. From the ¹H-¹H COSY experiment, we could easily recognize the signals of H-2 at δ 2.18 and at 2.30 and of H7 at δ 1.43. From the correlations of these hydrogens in the HETCOR spectrum, we could assign the peaks at δ 27.2 and 27.3 to carbons C-2 and C-7, respectively. The ¹H signals of H-6 at δ 1.25 and 2.25 and of H-11 at δ 1.55 were correlated with the 13 C signals at δ 36.0 and 38.7, which were assigned to C-6 and C-11, respectively, in the longrange HETCOR spectrum.

From the long-range HETCOR experiment, a differentiation of the signal of quaternary carbons C-5 and C-9 was made. Through this experiment, the chemical shift at δ 37.7 was easily assigned to C-5 because of the correlations of this peak with the hydrogens of the C-19 methyl group at δ 1.28, H-6 (δ 1.15 and 2.29) and H-10 (δ 1.39). The observed correlations of the chemical shift at δ 38.9 with the hydrogens of the C-20 methyl group at δ 0.78, H-8 (δ 1.58) and H-10 (δ 1.39) confirmed the assigned of C-9. The assignments of the chemical shifts of C-6 and C-11 were also confirmed in the same way since the signals at δ 36.0 (C-6) and 38.7 (C-11) were

correlated with the hydrogens of the methyl groups at C-19 (δ 1.28) and C-20 (δ 0.78), respectively.

The reduction of the double bond at C-3 to form 5-10 introduces a considerable modification of the A ring conformation, which causes predictable shift changes for C-3 and C-4 and also for the homoallylic carbons C-1, C-10 and C-6. The elimination of the endocyclic homoallylic effect causes a deshielding $(\Delta \delta \approx 3)$ of C-1 and C-10; a deshielding of the same magnitude was also observed for C-6. Almost no effect was observed for the allylic carbons (C-2 and C-5). The long-range HETCOR experiment for 5 was particularly useful in this case, to confirm the assignment of the chemical shift of C-6 (which is deshielded by $\Delta \delta = 3.9$ ppm when compared with 1), which resonates at δ 39.9 and is correlated with the hydrogens of the C-19 methly group at δ 0.95. The assignment of C-10 was also confirmed through the correlation of the chemical shift at δ 49.3 with the hydrogens of the C-19 and C-20 methyl groups at δ 0.95 and 0.63, respectively. The chemical shifts of these two methyl group were also correlated with the carbon signals at δ 37.3 and 38.9, respectively, confirming the previous assignments for the quaternary carbons C-5 and C-9. On comparison of the chemical shifts of the decalin system of 5 and 15, we observed that they are very similar except for the side chain, as expected.

On comparison the 13 C chemical shifts of 11 and 12 with 5 and 6, we can clearly observe the differences for C-2, C-10 and C-19 due to the change in orientation of the R group (COOCH₃ and CH₂OH) at C-4, from axial to equatorial. For 11 and 12, we can observe a shielding of C-2 ($\Delta\delta \approx -4$) and C-10 ($\Delta\delta \approx -7$ to -9) due to the effect of the γ -gauche interaction with the R group and a deshielding of the C-19 methyl group ($\Delta\delta \approx 6$). We can also observe a slight shielding effect on C-4 ($\Delta\delta \approx -3$).

For 13 with $\Delta^{4(18)}$, we observed a significant modification of the ¹³C chemical shifts for the carbons of the A ring when compared with the corresponding carbons of 10. These chemical shifts are also very similar to those published for the related clerodane diterpene.⁸ For 14, the double bonds at $\Delta^{2,4(18)}$ causes a significant modification of the chemical shifts for the A ring carbons (see Table 1).

Our analysis suggests that the ¹³C NMR data in Table 1 are correctly assigned and we hope that these compounds will serve as models for the assignment and characterization of similar compounds in further research.

Acknowledgements

We thank FAPESP for funding this research. M.C. thanks CAPES/PICD for a fellowship.

REFERENCES

- 1. P. M. Imamura and H. Pantarotto, Liebigs Ann. 1891 (1995).
- S. C. Sharma, J. S. Tandon, B. Porter, M. S. Raju and E. Wenkert, Phytochemistry 23, 1194 (1984).
- 3. T. Lu, D. Vargas, S. G. Franzblau and N. H. Fischer, *Phyto-chemistry* 38, 451 (1995).
- F. W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR Spectra. Heyden, London (1980).
- E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy. VCH, Weinheim (1987).
- B. L. Buckwalter, I. R. Burfitt, A. A. Nagel, E. Wenkert and F. Näf, Helv. Chim. Acta 58, 1567 (1975).
- S. de Rosa, L. Minale, R. Riccio and G. Sodano, J. Chem. Soc. Perkin Trans. 1 1408 (1976).
- 8. A. Rudi and Y. Koshman, J. Nat. Prod. 55, 1408 (1992).
- 9. R. A. Spanevello and A. J. Vila, Phytochemistry 35, 537 (1994).
- X.-J. Hao, X.-S. Yang, Z. Zhang and L.-J. Shang, *Phytochemistry* 39, 447 (1995).